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Abstract—A generalized characteristic method to solve two-dimensional time domain elasto-
dynamics problems is developed. The (real) characteristic surfaces in x, y, t-space for the Navier’s
equations are continued to the complex domain, in which they are called generalized characteristics.
The first order ordinary differential equations along the generalized characteristics which are
equivalent to the Navier’s equations are used to simplify an initial-boundary value problem of
elastodynamics to a set of algebraic equations whose unknowns are the first order derivatives of the
displacement components. The reflection coefficients of longitudinal and transverse waves, whose
fronts can be of arbitrary convex shape, from a traction free boundary are also found to be algebraic
expressions. The method makes the inversion of Laplace transform required by Cagniard’s technique
unnecessary and can be used directly to analyse the head wave and the regions of influence of the
reflected waves. Closed form expressions for the time domain Green’s function in the whole plane
and the solution of Lamb’s problem for a buried concentrated force are given as applications of the
method. Formulae for the surface displacement take on a simpler form than those reported
previously. Finally, some numerical results for the displacement of receivers on and below the
surface are given. The displacements of reflected waves approach infinity when they are treated
separately but superposing the displacements due to the reflected p- and s-waves shows that the
transient Rayleigh pulse is finite.

1. INTRODUCTION

The method of characteristics has been used successfully to treat one-dimensional elastic
wave propagation problems (Achenbach, 1973; Eringen and Suhubi, 1975; Miklowitz,
1978). However, this technique has not been used efficiently to address elastic wave propa-
gation problems in two or three dimensions [see Clifton (1967) and Ziv (1969)]. That is,
there is no solution of the wave equation in two dimensions which is comparable with
d’Alembert’s solution in one dimension (Achenbach, 1973; Miklowitz, 1978 ; Hudson,
1980). The difficulty in using the characteristic method in two-dimensional elastodynamics
is due to the fact that the governing equations are not hyperbolic in some regions of x, y, t-
space where waves propagate. For the special case of self-similar problems, the difficulty
has been circumvented [see Craggs (1960) and Miles (1960)]. However, the characteristic
method has not been applied successfully to the general two-dimensional problem.

An example problem that has not been solved with the characteristic method is that
of the motion of an elastic half-space loaded by a buried impulsive line or point force first
investigated by Lamb (1904). In the papers by Pekeris (1940, 1955), Pekeris and Lifson
(1957), Garvin (1954), Pao and Gajewski (1977), Tsai and Ma (1991) and in the books by
Ewing et al. (1957), Achenbach (1973), Eringen and Suhubi (1975), Miklowitz (1978) and
Hudson (1980), this problem was studied using double integral transforms. It should be
mentioned that Pekeris (1940, 1955) inverted the transformed solution for the displacements
by a technique close in nature to Cagniard’s (1962) and illustrated his solution with
numerical examples. Hudson (1980) was the first to calculate closed form expressions for
displacements in a half-plane subject to a buried line impulse. The transient displacement
field in an elastic half space induced by surface impulse loading was studied originally by
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Lamb (1904) and has been studied by many authors using integral transform methods
(Payton, 1967; Miklowitz, 1978), Chaplygin’s transformations (Craggs, 1960), and
Smirnov-Sobolev’s method (Smirnov and Sobolev, 1932; Thompson and Robinson,
1969 ; Cherepanov and Afanas’ev, 1974). The last two methods can be applied only to self-
similar problems. Additional references concerning the problems can be found in the
excellent review papers of Miklowitz (1964) and Pao (1983).

A generalized characteristic method was presented previously (Su and Liu, 1986; Su
and Fu, 1989). In the present paper the method is developed and completed. It can be
thought of as the two-dimensional development of the characteristic method analogous to
d’Alembert’s solution for one-dimensional problems. In Section 2, the classical charac-
teristic surfaces and the equivalent first order ordinary differential equations, of the Navier
equations along the characteristics are recalled. In Section 3 the real characteristics are
continued into the complex plane in which they are called generalized characteristics. The
generalized characteristics have the same properties as classical characteristics so that they
can be used to solve two-dimensional elastodynamic problems in the complete x, y, #-space.
From the expressions for stress components along the generalized characteristics the initial-
boundary value problems of elastodynamics are simplified to a set of algebraic equations
whose solutions are first order derivatives of the displacement components. The method
leads directly to the reflection coefficients of elastic waves, whose fronts can be of arbitrary
convex shape, from a traction free boundary along the reflected characteristics such as those
found for the reflection of plane waves (Section 4). The full plane Green’s function is found
as the solution of a boundary value problem (Section 5). The generalized characteristics
are used directly to analyse the regions of reflected waves and head waves. The reflection
coefficients and the full plane Green’s function lead to the solution of Lamb’s problem for
a buried source. This solution yields particular compact solutions for the surface dis-
placement and for subsurface displacements induced by a surface force. Some numerical
results for the displacement histories of receivers near and far from the source in the half
plane are shown. The results show the salient features of the displacements of these receivers.
In particular it is shown that the displacements of the reflected waves approach infinity
when they are treated separately but that summing the displacements of the reflected p- and
s-waves reveals that the transient Rayleigh pulse is finite.

2. CHARACTERISTICS FOR NAVIER’S EQUATIONS

Navier’s equation for the displacement vector u for an elastic half space
(— o0 < x < o0, ¥ 2= 0) subjected to a buried impulsive line force (plane strain) is written
as:

2

(A+20)V - Vu+(A+uV xV x u-—p%—t-}l =~ pld(x—x4)d(y —y0)o(2), (D

where / and u are Lamé’s elastic constants, p is mass density, I is the load vector, J is the
Dirac delta function, and x, and y, are the coordinates of the point of load application.
Hooke’s Law relates the stress components to the displacement gradient through

a = AVu[l] +u(Vu+uV) 2)
and the zero initial conditions are

du
u=5;=0 for ¢t=0. 3)

According to the theory of differential equations (Courant and Hilbert, 1962}, surfaces
z(x, y,t) = C (Cis a real number) with Vz(x, y,7) # 0in x, y, -space are said {o be charac-
teristics of eqn (1) if they satisfy the characteristic condition which can be simplified to
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o0zV (oz\¥ (6z>2>((62)2 (62)2 2(8z>2>
-~ 1 _ - it 7Y - — 4
((6x)+(6y> “\z) \ax) t\5) ~9\a) ) =% @

where a, and a, are the slownesses of longitudinal and transverse waves respectively.
Appendix A shows that the implicit functions z,(x, y,f) = C; and z,(x, y, t) = C, deter-
mined by

t—zixtn(z)y+¢:(z) =0, n(2) =y at-2%, i=1,2 (%)

are the general integrals of eqn (4). Here —a; < C; < a; (i = 1,2), z; are real functions, and
¢.(z,) and ¢,(z,) are arbitrary functions whose second derivatives exist. Substitution of
zi(x, y, ) = C; into eqns (5) shows that they define two couples of families of characteristic
planes in x, y, t-space. The + and — signs in front of the radicals indicate the directions of
wave travel. The functions ¢,(z;) can be determined for a special point in x, y, t-space
through which the characteristic plane passes.

If a family of the characteristic planes on a parameter possesses an envelope, then this
envelope is also a solution of eqn (4). The characteristic planes [eqns (5)] are the planes
tangent to the envelope. The shape of the envelope depends on the functions ¢,(z;). Elim-
inating z; from the following equations [see Sneddon (1957) and Courant and Hilbert
(1962)] :

t—xz;2n(z)y+¢(z) =0,
—xFyz;/n:(z;) +de;(z)/dz; = 0, (6)

leads to implicit equations of envelopes of characteristic planes of the form

Jilx, s ) =0. Y

The envelopes are called the singular integrals of eqn (4). Equations (6) were also given as
saddle points of the paths of the transform inversion by Cagniard’s technique [see Norwood
(1975)].

For the special case ¢,;(z;) = 0, the envelopes are the characteristic cones

t—a/x*+y*=0, i=1,2. ®

The characteristic planes and their envelopes can be wave fronts which define the regions
of influence of waves [see Courant and Hilbert (1962)].

In Section 5 the problem of inhomogeneous field equations and homogeneous bound-
ary conditions will be transformed to one of homogeneous field equations and inhomo-
geneous boundary conditions, therefore it is sufficient to consider the homogeneous field
equations here. With the aid of interior derivatives [see Courant and Hilbert (1962)], the
relationships along the characteristics furnished by the differential equations can be written
in a simple manner. Write the displacement components of the vector u as U,(z;), Vi(z;)
i = 1,2. Substituting eqns (5) into eqn (1) leads to the following differential equations
along characteristic planes:

Mmz1)G(z)) = Fz,H((z)), 2:G2(22) = £12(22)H2(2,),
Gi(z) = dU,(z)/dz,, Hi(z;) = dV;(z)/dz,. ®

Here the upper and lower signs depend on the signs of the radicals in eqn (5). Equations
(9) are called the interior operators of Navier’s equation along the characteristic surfaces.
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3. CONTINUATION TO THE COMPLEX DOMAIN

Equation (1) is hyperbolic when the point (x, y, #) is located outside the envelope of
longitudinal wave characteristics, mixed when the point is located between envelopes of the
longitudinal and transverse waves, and elliptic when the point is located within the envelope
of transverse waves [see Courant and Hilbert (1962) and for a special case see Miles (1960)
and Craggs (1960)]. That is, the classifications of eqn (1) are based solely on position in
X, ¥, 1-space.

Lewy [see Courant and Hilbert (1962)] discussed the transition in type from elliptic to
hyperbolic for second order differential equations (two independent variables) by con-
sidering the complex domain. The continuation to the complex plane makes the distinction
between equation classifications disappear in principle. In the same way, the real value of
zi(x, y, 1) = Ci(—a; € C; < a;) can also be continued to the whole complex plane. As C; are
not only real (—a; < C; € a;), but also complex, the implicit complex functions z; (the same
symbols are used for both the real and complex functions)

t—zix+n(z)y+¢i(z) =0, i=12, (10)

also satisfy the characteristic condition [eqn (4)]. Here the branch cuts of the radical #;(z;)
are taken along Im[z;] = 0,4; < |[Re[z;]| < co which are the branch cuts of the functions

\/ a;+z and \/ a;,— z, respectively. The branch of the function #, that satisfies eqn (10) is the
only branch used in subsequent equations (Appendix B). The real and complex solutions
of the characteristic condition are called “generalized characteristics”. However, according
to the classical theory, the complex solutions are not characteristic surfaces.

The solutions of eqn (1) can be expressed as the real part of complex functions
(Courant and Hilbert, 1962) as

u(x, y’ t) = RC {Ul(zl)+U2(22)}a v(x, y, t) = RC{V](Z])“}' VZ(ZZ)}' (11)

Since the solutions are analytic functions, the approach used in the previous section
for the real characteristics can be pursued for the complex characteristics. The same
equations are found for the complex functions along complex *‘characteristic surfaces” (Su
and Liu, 1986; Su and Fu, 1989) so that

n1(z)G(z)) = Fz1Hi(z1), 22G:(22) = 112(22) H,(23). (12)

Equations (10) and (12) can be used to prove that
oU(z)[oy—0V (z))/0x =0, 0Uy(z,)/0x+3Vy(z5)/0y = 0. (13)
Equations (13) show that there is a longitudinal wave and transverse wave traveling (the
speeds are the same as those traveling along the real characteristics) along the generalized

characteristics z; and z,, respectively. From eqn (2), the stress components on generalized
characteristics are expressed as

Oy =

I:V(ﬂlz( ]))G (z 1) +2G2(22)d22]

o, = uRe [Y(Z‘)G( el —262(z2)—], Y2) = a3 —227,

— miz) dzl ¥(z3) dz,
o= FuRe[ 210G 84 T g0 b | (14

where the sign for ., is taken to be consistent with the sign of eqn (5).
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The geometry of the complex functions is considered here. In the complex equations
(10), z; can be any value in the complex plane. Each expression of eqns (10) can be separated
into two real equations which correspond to real planes in x, y, t-space. The solution of the
real simultaneous equations corresponds to the intersection of the two planes. In other
words, every complex function z,(x, y, t) = C; corresponds to a straight line in x, y, t-space.
All of these straight lines are on the side of the envelope opposite the characteristic planes
[eqns (5)] so that each of eqns (10) defines the correspondence between the straight line
and the complex value of C;. There are two couples of families of the lines corresponding
to the + or — signs in front of the radicals in eqns (10). However, when the wave propagates
into the static region there is only one pair of generalized characteristics.

The generalized characteristic method is closely related to previous solution techniques.
In particular, if ¢,(z;) = 0, eqns (10) are Smirnov—Sobolev’s transformation (Smirnov and
Sobolev, 1932; Thompson and Robinson, 1969) as well as Chaplygin’s transformation
(Miles, 1960). It can also be shown that eqns (10) are the paths of integration in the
Cagniard method used by de Hoop (1960).

4. REFLECTED WAVES AND THEIR CHARACTERISTICS

In this section, the generalized characteristic method is used to calculate free surface
reflection coefficients. The boundary conditions on the traction free surface of the half plane
(— o < x < o0,y = 0) are given by

6,=0, 7,=0, on y=0. (15)

First the reflection of a longitudinal (p) wave is analysed. The generalized characteristic
of the p-wave incident to the boundary is written as

t—zx+m(z)y+éi(z) =0. (16)

Reflected waves are generated when the incident wave impinges upon the boundary. The
reflected waves propagate along characteristics which also satisfy the characteristic con-
dition of eqn (4). According to eqns (5) and (10), there are two additional generalized
characteristics which pass through the points on the boundary x—¢ plane in x, y, t-space
through which the incident waves pass. The y-component of their traveling direction is
opposite to that of the incident wave and their characteristics are represented by

t=&x—ni(&)y+¢:(&) =0, i=12, an

where £, and &, are the characteristics of the reflected p- and s-waves, respectively.
The displacement components of the incident p-wave and the reflected p- and s-waves
are given as

upl‘(xs Vs t) = Re {Upi(zl)}s upr(x’ Vs t) = Re {Upp(6l)+ Ups(éz)};
vpi(x’ ) t) = RC {Vpi(zl)}’ Upr(xy Vs t) = Re{Vpp(cl)'*'Vp:(éZ)}‘ (18)

On the boundary y = 0, both eqns (16) and (17) can be simplified to
t1—Ax+¢,(A) =0, (19)

where 4 = z,(x,0,7) = £,(x,0,1) = £,(x,0, 7). The stress components for the incident and
reflected waves can be calculated from eqns (10) and (14).
Substituting eqns (16)—-(19) and eqns (14) into eqns (15) yields



114 S. G. Su and T. N. FARRIS
Y(AGp (D) —24%G,i(A) = —y(A)G,i(A),
211 (AN2(DGpp (D) +7(A)Gpe(A) = 21, (DN2(D)G i (A). (20)

Equations (20) with eqns (12) can be solved for the reflected wave components as

Gpp(81) = Kpp(3)Gu(81),  Gplé2) = K;(£2)Gri(£),
H,(§) = Kp(SDH(8), Hy($2) = K;(8:)H,i(82), @n

where

Ky (&) = [8in €M) -y EDIRE), K€ = —K5(£),
K;x(éZ) = [4n,(En2(E2)y(E2))/R(ES), K, (&) = [4f§7(§2)]/R(52),
R(&) = 4&n, (EDn2(E) +92(E). (22)
The reflection of incident s-waves is handled in the same manner. The generalized
characteristics of the incident and reflected waves are
t—xz3412(22) y+ ¢2(z2) = 0,
t—x{i—n({)y+¢2({)=0, i=12. (23)
Again the first derivatives of the displacement components of reflected waves due to
the incident s-wave are
Gsp(Cl) = K:p(CI)Gsi(CI)a Gs:(CZ) = K::(C2)G.vi(c2)s
H, () = KL,(()H (), Hi((2) = KiL(()H((2), (24)

where

Ko, () =K, (), K5(L) = K,({0)),
K5 (02) = K (L), Ki(C) = Kpp((a). (25)
The functions K,,,(m,n = p,s) are the reflection coefficients of elastic waves along

generalized characteristics. Knowing the functions ¢,(z;) and the incident displacements,
the reflected waves can be obtained using K,,,,.

5. THE GREEN’S FUNCTION FOR THE WHOLE PLANE

The response of the unbounded medium subjected to an impulse [in eqn (1)] can be
separated into two problems: the vertical load I, solution is antisymmetric with respect to
the x-axis and the horizontal load I, solution is symmetric with respect to the x-axis. The
symmetric problem can be reformulated as the following boundary value problem for a
half plane:

o) = +ipl,d(x—x0)H(1), u’°=0 at y—yp,=0, (26)
where

f° =J;(f)dt, @7

the homogeneous form of eqn (1) is used, H(¢) is the Heaviside step function, and the —
sign is used for the half plane y — y, > 0 and the + sign is used for the half plane y —y, < 0.
The generalized characteristics are expressed as
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1—(x—x0)z; N )(y—yo) =0, i=12 (28)

and

o(z,) = xoz; Fyoni(z;) (29)

since the generalized characteristics pass through the point (x,, yo,0) in x, y, t-space.
With the aid of eqns (14), the boundary conditions {eqn (26)] may be written as

t—A(x—xo) =0,
Y(AG2(A) —24°Gy(A) = Faldad,
Gi12(A)+G.(4) =0, (30)

where the following expressions are used

- i iI
t5(x—xo)=6(x t"°), 5('11) +Re ['n] A, = 4_-'2—;. 31)

Equations (31) are derived in Appendix C. The positive sign is used in the second and third
expressions of eqns (31) if we choose Im (z;) < 0 while the negative sign is used if we choose
Im (z;) > 0 (see Appendix C).

The solution is found as

Gi:(z)) = FA2z\, Gz = 1Az,
H\y(z)) = Ay (21), Hiyl(zy) = Azzg/ﬂ2(22)~ (32)

The response of the unbounded medium to the horizontal impulse is symmetric to the
plane y—y, = 0 and the procedure of the previous paragraph leads to

Gy = Aizi/m(z)), Gy = Aina(22),

H, = FA:z, H,, = A, z,, 33)
where
il,

AI =ﬂ.

Equations (27), (28), (32) and (33) can be used to represent the Green’s function for
the whole plane as

2 dU? dz
“j(X,ys t) Zd—?i?— Re zGu(zc)Sl(z)
2 dy? dz;
vj(xa s t) Z d dt = Re Z Hlj(zi)si(z )9 .] - l 2 (34)

where
Si(z;) = [(x~—xo) — |y =yolzi/mi(z)) "

The denominators in the above, S;(z;), are zero at the wavefronts indicated by egns (6) or
(8). Thus S;(z;) automatically gives the regions of influence of the waves.
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6. THE SOLUTION OF LAMB’S PROBLEM FOR A BURIED FORCE

Before the elastic waves meet the boundary, the disturbance caused by the elastic waves
in the half plane are the same as that for the whole plane. The solution of Lamb’s problem
for a buried force is found by superposing to the whole plane Green’s function the con-
tribution from the waves reflected from the boundary.

The generalized characteristics for the incident waves are eqns (28). Using eqns (17)
and (23) in Section 4, the generalized characteristics for reflected waves are rewritten as

t—x2;—0(2)y+Xozi— Bi(z:)yo = 0, Bi(2) = vV b} 2%,
a =ay=as=b,=by=0b, a,=a,=a,=>b,=bs=b, (35)
where i can take on the values 3,4, 5 or 6.

The generalized characteristics for incident p- and s-waves are the solutions of eqns
(28) written as

((x—xo)t—ily—yol/2—air® ,, ,
= alr’ < 2,
X—Xo)a; ]
zi =1 (—rO)-—f arr*=+1, i=1,2, (36)
(x—xo)t—|y—J’o|\/ ‘11'2"2_"t2 a2r2 > t2
r2 i [}

where r2 = (x—x0)2+ (¥ —yo) %

The straight line which corresponds to z, = constant intersects the boundary plane
y = 0in x, y, t-space at the point (%, 0, f) which is defined next. The boundary value of the
characteristics is

(B—xo)—iyo /T2 —alF?

A @7t < P2

where 72 = (X—x,)2+ yi.
The reflected characteristics z; and z, in eqns (35) pass through the point (%, 0, 7), and
z,, z3 and z, all satisfy

t-_.fz,'"'xOZi—ﬂ,-(Z,‘)yo = O, i= 1, 3, 4. (38)

That is, z3(xX,0,7) = z,(%,0,7) = 4,. Substituting 4, into eqns (35) yields straight lines for
the generalized characteristics of pp- and ps-waves whose equations are

t—i—(x—%)A,—yn;(4) =0, i=3,4 39

As f = a,\F, A, = (¥—x,)a, [F, eqns (39) are the equations for the wavefronts of pp- and ps-
waves (see Fig. 1):

f106 3,0 = t—a,/(x—x0)*+ (y+y0)* = 0,
fa06, p, ) = t—a,J(X—=x0)* +y3—a,/(x—%)*+y* =0, (40)

where £ is the solution of the following equation from z,(X,0,7) = 4,:
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p-wave —

pp—wave

ps—wave

Fig. 1. Wavefronts of incident p-wave and reflected waves in xy-space.

(X—xo)a, _ (x—%)a, . 41)
JE=x) i &=+

Note that eqn (41) is Snell’s law.
Similarly for the incident s-wave the wavefront of the sp- and ss-waves can be obtained
by putting 7 = a,7 and A, = (¥— x,)a,/F (see Fig. 2) leading to

fs(x, p,0) = t—ay/(F—x0) 2 +ys—ai/(x—%)*+y* =0,

fo(x, y,0) = t—as/(x—x0)* + (y+y0)* = 0, 42

where X is the solution of the following equation:

ss—-wave

Fig. 2. Wavefronts of incident s-wave and reflected waves in xyz-space.
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(E—xo)a, _  (x—X)a
VE=x) 4y} Jx—5)+)?

Now the head wave is analysed. The wavefront of the incident s-wave at y = 0 is
expressed as eqn (7) resulting in

I=ay,/(X—xp)*’+y; as y=0. (44)

The rate of s-wave travel along the traction free surface is

and ¥ < x*, x*seebelow. (43)

dx F

a4~ Goxom @

When

1% o i>ape/ai@—a), (46)

a, dt-,

the reflected sp-wave propagates along the traction-free boundary faster than the incident
wave, which leads to head waves. The critical point of generating head waves is at (x*, 0, t*)
where

x* = xotyo/at/(@3—ad), t* = a,y,/d}/(a5—a}). 47)

After t* (or X > x*), that portion of the wavefront of the sp-wave can be determined by

t—t*—(x—x*)zs—yJal—z1 =0

or
t—t* =a;/(x—x*)*+y%. (48)

The characteristic at y = 0 is

. r—t*
M =z5(x,0,0) = —< = ta. 49
The wavefront of the head wave depends on A* as
t+(x—xo)a;—(p+yo)/ai—at = 0. (50)

Equations (47) and (50) along with the front of the reflected ss-wave [the second of eqn
(42)] construct the region of influence of the ss head wave. In this region, z, is expressed
using eqns (35) as

Hx—xo) Fly—yol/air’—+¢’
2o = = . (51)

6

For ¢ < a;r in eqns (36), the incident wave is a plane wave. The reflection of such plane
waves can be discussed in a similar manner. If y = 0 or y, =0, eqn (50) and the second
of eqns (42) are the same as the regions of influence of the head waves found for these
special cases by Payton (1967) and Norwood (1973).

Conversely, if x, y, t in eqns (35) are given, z;(x, y, 1) (i = 3,4, 5, 6) can be found after
some effort that involves finding the solutions to quartic equations. Standard formulae for
solving the pertinent quartic equation can be used (Spiegel, 1968).

The disturbances caused by reflected waves can be written from eqns (21) and (24) as
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G;(z) = K{(2))Gmj(z:), Hij(z) = Ki(z))H,/(z)),
m=12 i=2m+n, n=12, j=1,2, (52)

where K, = K,,, K, = K,,, Ks = K,,, and K¢ = K, are given in eqns (22) and (25). Finally
the solution of Lamb’s problem for a buried force is given as

6 6
u(x,y,0) =Re Y, Goj(z)Sk, v;(x,y,1) =Re Y Hi(z)Si, j=12, (53)
k=1 k=1

where

S; = [(x—x0) —yz:/n:(2:) —yoz:/Bi(z)] " (54)

Similar to eqns (34), the denominators of S; in eqns (53) can be zero giving singular
solutions corresponding to the wavefronts. _

The regions of influence of the reflected waves and the head waves are given auto-
matically by the displacement expressions (34) or (53). For example :

(1) For the sp-wave, the horizontal displacement due to the vertical impulse is given
by

1 zsns(zs) :I .
2 Im |:K;‘ z , z¥> a? or z,is complex,
uf ={2n (25) (x—xo)ns5(z5) —yzs—yotis(z5)/Bs(zs) ’ l ? P
0, z} < a? and z; is real.
(55)
The equation for the sp-wavefront is the same as that given in eqn (42).
(2) For the ss-wave, the horizontal displacement is given by
'
I, :
——2  Re[K%(z6)z6n6(2z6)], 22 > a3 or z, iscomplex,
2n/t? —air?
w5 (x, y, ) = 3 1 56
750 ——2 Im[K%(z6)zt1s(z6)], a? <z < a3 and z, is real, (56)
2n./air* —1®
0, z% < a? and z¢ is real,

.

where the following expressions are used :

i/t2—airt, *>air?, 7
(x—x)M6(z6) — (¥ +y0)z6 = \/ﬁ——
air*—i?, t* <air’.

The first condition in eqn (56) is identified as eqn (42), while the second condition is
obtained by putting z? = a} into eqns (35) leading to eqn (50).

The solution expressed in eqn (53) is equivalent to the formulae of Hudson (1980), his
eqns (7.66) and (7.67), which were obtained using double integral transforms.

Writing eqns (53) along y = 0 gives the boundary values of the Green’s functions in
the half plane as

SAS 31:1-1
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2
u;(x,0,¢) = Re Z Fi(2k0) Gy (2k0) Skos
k=1

2
v;(x,0,) = Re Z Fi i (@zio)Hi j(2k0)Skos J=1,2, (58)
I

k=

where

F\(2) = 4a3n,(2)12(2)/R(2), F1(2) = 2a3y(2)/R(2),
Sio = [(x—X0) —yozko/Mi(zko)] " (59)

Head waves and the regions of influence of the waves are included implicitly in eqns (58).

When the load is applied at the boundary of the half-plane so that y, = 0, the solutions
for Lamb’s problem for a surface load can be solved directly. In this case, the governing
equations are homogeneous and the boundary conditions are inhomogeneous. Noting that
there are no reflected waves, the generalized characteristics are written as

t—zi(x—x0)—yni(z) =0, i=12. (60)
Satisfying the stress free boundary conditions leads to

G'i(z)) = [24,zin2(2)) + 422:7(2)}/R(z)),

G%5(z2) = [A1n2(22)7(22) — 2422501 (22)02(22)) R (22),

H'(z)) = Gi(z) *ni(z)/z), A\ =il/x,

HY%(z2) = —G5(z22) *22/M2(22), Aa =il /m. (61)

The components of displacement are obtained as

2 2
u= a3 Re Z G!(z)Si(z), v=a5Re Z H}(z)8i(z:), (62)
i=1 i=1

where

Si(z) = [(x—xo) —yzi/ni(z)]~". (63)

The wavefront can be obtained by putting y, = 0 in eqns (28). Equations (62) are identical
to formulae that represent the solution to Lamb’s problem for a surface load [see Craggs
(1960), Miles (1960), Thompson and Robinson (1969), Cherepanov and Afanas’ev (1974)
and Norwood (1973)]. In this special case, the present method is the same as Smirnov—
Sobolev’s method and eqns (60) are equivalent to Chaplygin’s transformations.

7. NUMERICAL RESULTS

In this section, the solution is illustrated through the calculation of displacement
components at several receiver locations. Both receivers near to and far away from the
source and on or under the traction free surface are considered. For compactness, results
are given only for the vertical applied force (I, = 0). Results are given as nondimensional
horizontal and vertical displacements, u(x, y, )nc,yo/I and v(x, y, )7cay,o/I, versus non-
dimensional time, tc,/r, where r is the distance between the receiver location and source
point. The coordinates of the receivers are given in terms of the nondimensional distances
n = (x—x,)/yo and m = y/y,. The ratio of the speeds of the p- and s-waves (a,/a,) is taken
as \/3 for all of the numerical examples. The infinite displacements occurring at some of
the wavefronts are shown as the maximum in each scale.
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Fig. 3. Dimensionless horizontal displacement history (u(f)nc,yo/I,) for n =1, 5, 10, 15, 20 and
m=0.5.

Figures 3 and 4 show horizontal and vertical displacement histories of several sub-
surface receivers located at n = 5, 10, 15, 20, 25 and m = 0.5. The time of arrival of each
wave is clearly discernible in both the horizontal and vertical displacement histories. The
displacement due to the direct p- and s-waves is the main feature for the receivers near the
source point.

Figure 5 shows the vertical displacement history at various depths along the vertical
line through the source point. The results emphasize that the solutions due to the direct
and reflected wavefronts are not always infinite. Figure 6 shows the vertical displacement
history for surface receivers both relatively near the source and quite far away from the
source. The Rayleigh pulse attenuates very slowly along the x-direction. Equations (58),
which cover the special case of y = 0, are very useful for the generation of the results in
Fig. 6 as evaluation using the full solution {egns (53)] requires great care for large values
of x.

Figure 7 shows results analogous to the second graph in Fig. 3 with the displacement
decomposed into the separate waves. The displacements for these separate waves
approaches infinity as time approaches infinity. However, superposition of the results from
each wave leads to zero displacement at large values of time.

8. CONCLUSION

The characteristic conditions of the Navier equations for elastic waves exist as both
real and complex solutions in x, y, t-space. They are called generalized characteristics. The
generalized characteristics have the same properties as the real characteristics. The first
order differential equations along the generalized characteristics are equivalent to the
governing equations in the sense that their solutions automatically satisfy the governing
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Fig. 4. Dimensionless vertical displacement history (v(f)nc,yo/l,) for n =1, 5, 10, 15, 20 and
m=20.5.
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Fig. 5. Dimensionless vertical displacement history (v(x, y, )7c,y,/1,) for several receivers at
n=00,m=0.0,038, 1.6.
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Fig. 6. Dimensionless vertical displacement history (v(x, y, )nc, yo/1,) for surface receiversatn = 1,
5,25, 125,625, m = 0.
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Fig. 7. Dimensionless horizontal displacement history (u(x, y, )nc,yo/l,) for separate waves at
n=50,m=0.5.
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equations. Using this method, a boundary value problem of elastodynamics is solved in
two steps: the first step is the calculation of generalized characteristics with geometric
boundary conditions and the second is the calculation of the displacement or its derivatives
using stress (or displacement) boundary conditions. Each step involves the solution of first
order (partial or ordinary) differential equations. The method developed in the present paper
makes performance of the inverse Laplace transform required by Cagniard’s technique
unnecessary.

The method also can be used to solve problems of elastodynamics for transversely
isotropic media and of electromagnetic radiation. Additionally, the method may be applied
to three-dimensional problems of elastodynamics and electromagnetics ; however, here the
details are complicated.
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APPENDIX A

If the characteristic surface is given in the form

t=y,(x, 3. C) (64)

then the characteristic condition can be simplified to

aw 2 6{0 2 . 6$ 2 aw 2 N
-r b4y I = — ) - =0. 65
[(6x) +(6y) a ax) T dy a|=0 (65)
Following Charpit’s method as described in Chapter 2 of Sneddon (1957), the general solution to first order

nonlinear partial differential equations of the form given by eqn (65) can be solved using separation of variables
as follows. Assuming ,(x, y) = &(x)+n.(»), eqn (65) leads to

€+ =da or E)=al—-Mm) i=12 (66)
Since the right-hand side of eqn (66) is independent of x and its left-hand side is independent of y, each side of

the equation is equal to the same constant C;. This results leads to solutions [see Chapter 1 and Chapter 11 of
Courant and Hilbert (1962)]:

'//i= Cr‘x¢\/ a,z—-C,zy—qS,(C,), i= |92’ (67)
where C; is an arbitrary parameter and ¢,(C;) is an arbitrary function. Thus, the characteristic surface is given by
t—Cxt/a}—Cly+¢/(C) =0, i=12. (68)

APPENDIX B

For example, if ¢,(z;) = 0 and x > 0 in eqn (10), the solution of eqn (10} is

o _xrgilyl/e?—air? 69)
=

“i

and the function », can be expressed as

Tiv /1 —air?
" = il)’,’+lx\/2 a;r ) (70)

! r

Substituting z; and #; eqn (10) leads directly to the result that Re(n,) =0 and Im(n,) <0 if Im(z;) >0 or
Im(n)>0ifIm(z;) <0.
For the general case of ¢,(z,) not identically equal to zero, similar results are obtained by using eqn (10).
For completeness it is noted that either choice of sign in eqn (69) leads to the same solution of eqn (1).

APPENDIX C

There are several definitions of the é function [see Chapter VI of Courant and Hilbert (1962)]. One useful
form is

.
00 =i g

This leads to

k lim

_k B 1 Bk [«
hoE) = e T = A+ B b(")'

The solution to eqn (28) is written as

. (x~xo)tFily—yol /1" —ar
= _ ,
r

i

rf = (x—xp)* + (¥ —yp)%
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Now in the sense of generalized functions

. . . [y =yl
lim z = Fi /1P —at(x—x;)* lim
|y—.v(,|aoz' X—x, + (X~ Xp) orge0 72
t .
= Fin /2 —al(x—x0)25(x — x,)
X—Xp
t t o fx—x4
= Fintd(x—xp) = Find ,
X—Xo ( o X—X, * t

so that

6("_—"") = +Re {1 lim z,}.
! T1y—pol =0



